Association Analysis of Grain-setting Rates in Apical and Basal Spikelets in Bread Wheat (Triticum aestivum L.)

نویسندگان

  • Jie Guo
  • Yong Zhang
  • Weiping Shi
  • Boqiao Zhang
  • Jingjuan Zhang
  • Yanhao Xu
  • Xiaoming Cheng
  • Kai Cheng
  • Xueyong Zhang
  • Chenyang Hao
  • Shunhe Cheng
چکیده

The rates of grain-setting in apical and basal spikelets in wheat directly affect the kernel number per spike (KNPS). In this study, 220 wheat lines from 18 Chinese provinces and five foreign countries were used as a natural population. Phenotypic analysis showed differences in grain-setting rates between apical and basal spikelets. The broad-sense heritability of grain-setting rate in apical spikelets (18.7-21.0%) was higher than that for basal spikelets (9.4-16.4%). Significant correlations were found between KNPS and grain numbers in apical (R (2) = 0.40-0.45, P < 0.01) and basal (R (2) = 0.41-0.56, P < 0.01) spikelets. Seventy two of 106 SSR markers were associated with grain setting, 32 for apical spikelets, and 34 for basal spikelets. The SSR loci were located on 17 chromosomes, except 3A, 3D, 4A, and 7D, and explained 3.7-22.9% of the phenotypic variance. Four markers, Xcfa2153-1A 202 , Xgwm186-5A 118 , Xgwm156-3B 319 , and Xgwm537-7B 210 , showed the largest effects on grain numbers in apical and basal spikelets. High grain numbers in apical and basal spikelets were associated with elite alleles. Ningmai 9, Ning 0569, and Yangmai 18 with high grain-setting rates carried larger numbers of favorable alleles. Comparison of grain numbers in basal and apical spikelets of 35 Yangmai and Ningmai lines indicated that the Ningmai lines had better grain-setting rates (mean 21.4) than the Yangmai lines (16.5).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carpel size, grain filling, and morphology determine individual grain weight in wheat

Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat ...

متن کامل

Effect of zinc sulfate application on grain yield of bread wheat (Triticum aestivum L.) cv. Chamran under terminal heat stress conditions in Ahvaz

To study the effect of zinc sulfate rates on response of bread wheat cv. Cahmran to terminal heat stress conditions in Ahvaz, Iran, this experiment was conducted at the research farm of Agricultural and Natural Resources Sciences University of Khuzestan, Iran in two cropping cycles (2015-2016 and 2016-2017). The experimental design was split plot arrangements in randomized complete block design...

متن کامل

Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of pla...

متن کامل

Genetic Analysis and QTLs Identification of Some Agronomic Traits in Bread Wheat (Triticum aestivum L.) under Drought Stress

In order to study the genetic conditions of some agronomic traits in wheat, a cross was made between Gaspard and Kharchia varieties. F2, F3 and F4 progenies with parents were evaluated under drought conditions. Three-parameter model [m d h] considered as the best fit for number of fertile tiller and flag leaf length using generations mean analysis method. For number of grain per spike and main ...

متن کامل

FRIZZY PANICLE drives supernumerary spikelets in bread wheat.

Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015